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ABSTRACT

Heat waves are climate extremes having significant environmental and social impacts. However, there is no

universally accepted definition of a heat wave. The major goal of this study is to compare characteristics

of continental U.S. warm season (May–September) heat waves defined using four different variables—

temperature itself and three variables incorporating atmospheric moisture—all for differing intensity and

duration requirements. To normalize across different locations and climates, daily intensity is defined using

percentiles computed over the 1979–2013 period. The primary data source is the U.S. Historical Climato-

logical Network (USHCN), with humidity data from the North American Regional Reanalysis (NARR) also

tested and utilized. The results indicate that heat waves defined using daily maximum temperatures are more

frequent and persistent than when based on minimum temperatures, with substantial regional variations in

behavior. For all four temperature variables, heat waves based on daily minimum values have greater spatial

coherency than for daily maximum values. Regionally, statistically significant upward trends (1979–2013) in

heat wave frequency are identified, largest when based on daily minimum values, across variables. Other

notable differences in behavior include a higher frequency of heat waves based on maximum temperature

itself than for variables that include humidity, while daily minimum temperatures show greater similarity

across all variables in this regard. Overall, the study provides a baseline to compare with results from climate

model simulations and projections, for examining differing regional and large-scale circulation patterns as-

sociated with U.S. summer heat waves and for examining the role of land surface conditions in modulating

regional variations in heat wave behavior.

1. Introduction

At first glance, the physical characteristics of heat

waves would seem to be self-evident: extreme daily air

temperature anomalies that exceed specified magnitude

and duration criteria. These definitional criteria, how-

ever, are subjective and often chosen with a particular

impact inmind (e.g.,McGregor 2015; Barnett et al. 2010;

White et al. 2006; Schlenker and Roberts 2009). The

physical characteristics of heat waves can in fact be

rather nuanced. For example, the specific variable ex-

amined may be the maximum, minimum, or mean daily

temperature and atmospheric humidity (and other fac-

tors, such as solar radiation) may or may not also be

included in the definition of a heat wave [see the review

by Souch andGrimmond (2004) and references therein].

In addition, while a clear expectation of a warming cli-

mate is for heat waves to become more frequent and

intense (Melillo et al. 2014), future heat wave charac-

teristics will not necessarily change in a synchronous

fashion given their multiple definitions.

In this paper heat waves are viewed from a physical

climate perspective, with emphasis on the geographical

distribution of their occurrence and persistence char-

acteristics, and the sensitivity of these attributes to the

criteria used to define them. The geographic domain

considered is the conterminous Unites States and the

focus is on the warm season (May–September 1979–

2013). Previous work has generally addressed the vari-

ous attributes of U.S. summer heat waves in a piecewise

fashion. For example, some studies have focused on the
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sensitivity of specific heat-related outcomes to differing

temperature threshold exceedance criteria (Anderson

and Bell 2011; Barnett et al. 2010; Peterson et al. 2008).

Other studies have emphasized the need to include

surface humidity and advocate for the use of heat

indices (McGregor 2015; Sheridan and Kalkstein

2004; Robinson 2001; Kalkstein and Valimont 1986;

Steadman 1984, 1979) rather than temperature alone.

Regional variations in heat wave occurrence have

been addressed to varying degrees in these and other

studies. The geographical distribution of the persis-

tence characteristics of heat waves has received even

less attention, with studies tending to emphasize tem-

poral trends in extreme daily temperatures, heat in-

dices, or associated surface humidity (Peterson et al.

2008; Brown and DeGaetano 2013; Robinson 2000;

Kunkel et al. 1999; Gaffen and Ross 1998, 1999). A

recent study by Smith et al. (2013) takes a broader view

of U.S. heat waves by examining the geographical

distribution of trends and average heat wave occur-

rence for 15 heat wave indices. These indices included

the maximum, minimum, and mean daily temperature

as well as humidity. Consideration of varying magni-

tude criteria was implicit in the study, as it is included in

the index definition. That is, several of the 15 indices

used differ only in the intensity level used to define

them (e.g., the maximum daily temperature exceeding

the 90th vs the 95th percentile in the historical distri-

bution). The persistence characteristics of heat waves

were not explicitly examined in the study.

The motivation for this paper is to build upon these

and other results by undertaking a more thorough

analysis of the geographical distribution and regional

persistence characteristics of heat waves and their sen-

sitivity to heat wave definition. Different daily temper-

ature variables, temperature thresholds, and duration

criteria are considered in the analysis, with subseasonal

variations in heat wave behavior also examined. The

covariability of warm season humidity and temperature

is explored before examining the persistence charac-

teristics of three widely used heat indices that include

both surface temperature and humidity in their formu-

lation. These results are then contrasted with those for

the temperature-only heat wave definitions. This study

represents part of a larger effort to investigate U.S.

summer heat wave characteristics, temporal evolution,

trends, and projected changes. The current study will

thus provide a set of baseline analyses before climate

model simulations and projected changes in U.S. sum-

mer heat wave occurrence are considered.

The paper is organized as follows. The datasets and

basic methodological approaches used are described in

section 2. Section 3 first examines the temporal variability

and covariability among several of the heat wave

variables used in the study before considering the geo-

graphical distribution and regional persistence charac-

teristics of heat waves. Differing behavior between daily

maximum and minimum temperature variables is con-

sidered in section 4, with a brief discussion and the main

conclusions of the study provided in section 5.

2. Data and methodology

a. Data

The study utilizes three main observational and

reanalysis datasets. The primary dataset consists of

daily maximum, minimum, and mean temperatures for

1218 stations across the United States as contained in

the United States Historical Climatology Network

(USHCN; Menne et al. 2015). Although some of these

stations have records dating to the early part of the

twentieth century, the period 1979–2013 is emphasized

here. Various data quality control flags are included in

the USHCN dataset; their use in quality control analysis

is described in section 2b. A second, and much smaller,

set of station data consists of daily maximum and mini-

mum values of apparent temperature Ta computed for

187 stations located across the United States (NCDC

2011) over the period 1948–2015. These are first-order

stations that have observed humidity as well as tem-

perature data (more on this in section 2c). The third

dataset is the North American Regional Reanalysis

(NARR; Mesinger et al. 2006). The NARR data are

based on an observational data assimilation system built

around the Eta forecast model and consist of gridded

values at 32-km spatial resolution. The variables used

from this dataset are 3-hourly values of air temperature,

specific humidity, and relative humidity at 2m above

ground level covering the period 1979–2014. Daily

maximum and minimum temperatures are computed

from the 3-hourly values, with the specific humidity at

the time of the maximum and minimum temperature

also identified. The atmospheric vapor pressure was

computed at 3-hourly intervals using the relative hu-

midity and temperature data. The availability of surface

humidity in NARR allows for substantially greater

spatial detail in analyses of Ta (and other indices) than

the 187 locations where station humidity data is avail-

able. To accomplish this, ‘‘hybrid’’ station Ta values are

computed using NARR humidity and USHCN-based

station temperature with results compared to those us-

ing the 187-station dataset. The NCEP–DOE AMIP II

reanalysis (Reanalysis-2; Kanamitsu et al. 2002) product

is used to compute the transient eddy transports dis-

cussed in section 3c.
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b. Quality control of USHCN data

The USHCN daily station data come with quality

control indicators for each day’s data. For most days, no

quality control flag is present and the datum is deemed

to be good by the developers. For some days, however,

quality control flags of various types appear. Here, in-

dividual cases of data accompanying each of the quality

control flags were examined to determine whether the

data accompanied by that particular flag type should

generally be rejected, or alternatively accepted. For

most flag types, the flag was indeed sometimes found to

indicate potentially bad data. Such quality control flags

include, for example, poor spatial consistency, extreme

outlier (more than five standard deviations from mean),

data duplication from other years or months, zeros, poor

temporal consistency, and others. One data flag, how-

ever, indicative of internal consistency, was not found to

be associated with questionable data in approximately

10 cases checked. That is, the authors judged that the

behavior during the days surrounding this flag was rea-

sonable. Therefore, this particular flag was ignored,

while the data accompanied by all other quality control

flag types were replaced as missing.

An important factor not accounted for in the version

of the USHCN daily data used here is a systematic

temperature bias associated with changes in the time of

observation. Over the course of our study period there

has been a continual and substantial shift toward taking

observations in the morning (LST) rather than after-

noon, which introduces a temporally increasing cold bias

in the temperature data (Vose et al. 2003; Menne et al.

2009). This bias is not seen as being prohibitive in ex-

amining the spatial variability of heat waves, but could

reduce the magnitude of the positive temporal trends in

heat wave frequency that are discussed in section 4.

c. Calculation of apparent temperature, equivalent
temperature, and heat index

In addition to examining temperature variables alone

in the analysis, three heat indices are also considered

that incorporate atmospheric humidity in various forms.

These include Ta, the equivalent temperature Teq and a

heat index HI used by the U.S. National Weather Ser-

vice (NWS). These three indices were chosen because

they are all in widespread use and each index has a

different functional sensitivity to atmospheric moisture

(more on the latter will be presented in sections 3b

and 4).

For consistency with the 187-station dataset of daily

Ta, the same formula for computing the index is used

when incorporating the NARR data. Its computation

utilizes the linear regression results of Steadman (1984):

T
a
521:31 0:92T1 2:2e , (1)

where Ta is the apparent temperature (8C), T is the

ambient temperature (8C), and e is the vapor pressure

(kPa). An expression for Teq may be derived from the

moist enthalpy of the air (e.g., Fall et al. 2010) and

written as

T
eq
5T1L

y
q/C

p
, (2)

where Teq (K) is the equivalent temperature [Teq 5 H/

Cp, where H is the specific enthalpy (J kg21) and Cp is

the specific heat of air at constant pressure (Jkg21K21)],

T is the air temperature (K), Ly is the latent heat of

vaporization (J kg21), and q is the specific humidity

(dimensionless). As will be shown, Teq is affected much

more strongly by humidity than is Ta. The third index

used is the HI from the NWS. TheHI is computed using

2-m temperature and relative humidity as inputs

(Rothfusz 1990) and is based on a multiple regression fit

to the heat index of Steadman (1979), the latter which

included several other variables (wind, solar radiation,

etc.). The index has nine terms:

HI5 c
0
1 c

1
T1 c

2
RH1 c

3
TRH1 c

4
T2 1 c

5
RH2

1 c
6
T2RH1 c

7
TRH2 1 c

8
T2RH2 , (3)

where HI is the heat index (8F), T is the temperature

(8F), and RH is the relative humidity (%). The co-

efficient values are c0 5242.379, c1 5 2.049 015 23, c2 5
10.143 33127, c3520.22475541, c4526.837833 1023,

c5 5 25.481717 3 1022, c6 5 1.22874 3 1023, c7 5
8.5282 3 1024, and c8 5 21.99 3 1026. If the RH is less

than 13% and the temperature is between 808 and 1128F,
then the following adjustment is subtracted from HI:

A15
132RH

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
172 jT2 95j

17

r
. (4)

Additionally, if RH is greater than 85% and the tem-

perature is between 808 and 878F, then the following

adjustment is added to HI:

A25
RH2 85

10

�
872T

5

�
. (5)

Finally, if the temperature is less than 808F a simpler

formula is applied to calculate the overall index:

HI5 0:5[T1 61:011:2(T2 68:0)1 0:094RH]. (6)

When used in this study, the index was first converted to

degrees Celsius fT(8C) 5 [T(8F) 2 32]/1.8g.
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d. Comparisons of station Ta with USHCN plus
NARR

As this study emphasizes results based on theUSHCN

station temperature dataset, a method was needed to

include atmospheric humidity to compute Ta, Teq, and

HI. As the USHCN only contains daily temperatures,

the moisture field from the NARR dataset was used. To

see how well the NARR data performs, correlations

were computed between the dailymaximumvalues ofTa

for 33 of the 187 first-order stations (NCDC 2011) and

those based on 1) NARR daily maximum temperature

and humidity at the nearest grid point and 2) USHCN

temperature and NARR humidity at the nearest grid

point. The 33 USHCN stations used for this purpose

were selected for being less than 10km away from the

first-order station they are being compared with. Cor-

relations were computed based on daily July values for

seven arbitrarily selected years as having above-average

heat wave activity (1980, 1983, 1988, 1998, 1999, 2011,

and 2012). The results are summarized in Fig. 1, where

correlations are ranked from lowest to highest. For the

vast majority of the stations, correlations exceed 0.9 and

are higher when using USHCN temperature plus

NARR humidity than using both temperature and hu-

midity from NARR. The largest determinant of differ-

ence in the correlations in Fig. 1 is the distance between

the stations being compared (not shown). Overall, the

results suggest that the NARR humidity field is a very

reliable surrogate for station humidity.

e. Calculation of percentiles

For a given temperature variable, its percentile value

is first determined for each single date, with respect to

the number of years in the dataset (35 yr). Here, dates

span 153 days from 1 May to 30 September and, given

the finite record length, results are somewhat jumpy

over adjacent dates due to sampling variability.

Therefore, a second step is to temporally smooth the

daily results using a fourth-degree polynomial function.

The following describes the two steps further. Let us call

the needed percentile P (here, we let P have the four

values of 80, 85, 90, and 95). We have a given number of

years, called nyr. For calculations involving the NARR

data, nyr 5 35 yr because the year range is 1979–2013;

for calculations using onlyUSHCNdata, nyr can assume

larger values. For a given date, the years for nyr are

ordered from 1 (the lowest; i.e., the coldest) to nyr (the

highest; i.e., the warmest). Note that there will be ties.

Then, to get the value of the variable corresponding to

percentile P, we define the desired rank as 0.01Pnyr 1
0.5. For example, if there are 100 years and we want the

90th percentile (P5 90), then we have 0.93 1001 0.55
90.5. The value of the variable is then halfway between

the 90 lowest values and the 10 highest values (i.e.,

halfway between the 10th highest value and the 11th

highest value). For any rank fraction, the answer is a

weighted average of one of the observed values and the

observed value of an adjacent rank. In this simple ex-

ample, the two weights are both 0.5.)

To temporally smooth the resulting values, a poly-

nomial fit is applied to the 153-day series of raw per-

centile results. A fifth-order polynomial (containing the

mean as well as terms in x, x2, x3, and x4, where x is the

day number of the series) is used, as it was found to

produce a realistic fit for the more common climato-

logical patterns—a series having a broad maximum in

the second half of July, and rough symmetry between

the decreasing rate of warming in May and June and the

increasing rate of cooling in late August and September.

FIG. 1. (top) The temporal correlation of daily values of Ta computed at 33 first-order stations when using both

temperature and vapor pressure fromNARR (light gray bars) andUSHCN temperature data andNARRhumidity

data (dark gray bars). (bottom) The difference in correlation values at each station is shown by the solid black bars.
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It also served to fit stations having irregular but clima-

tologically meaningful features, such as west coast sta-

tions that have temporary drops in temperature in June

due to the onset of strong sea breezes and fog as inland

regions rapidly increase in daily temperature. The fifth-

order fit is not found to result in spurious variations due

to overfitting.

f. Heat wave definition

Heat waves are defined using varying temperature

exceedance thresholds and duration criteria as in pre-

vious work (Lyon 2009). Temperature and temperature

index values exceeding the 80th, 85th, 90th, and 95th

percentiles are considered. While the lower thresholds

may not appear to represent ‘‘extreme’’ conditions,

other studies have found, for example, that summer Ta

values exceeding the 85th percentile are closely corre-

lated with increased humanmortality rates in theUnited

States (Kalkstein and Davis 1989). The required dura-

tion for a heat wave was allowed to vary between 1 and 7

consecutive days, with both sets of criteria applied to

define heat waves using daily maximum and minimum

values of temperature, Ta, Teq, and HI.

3. Results

a. Temporal variability and covariability of heat wave
variables

To first provide some context for the subsequent

analysis of heat wave characteristics, we begin by ex-

amining the temporal variability and covariability of

several of the variables used in the study, emphasizing

regional variations and their evolution during the warm

season. The standard deviation of daily departures of

Tmax and Tmin and daily maximum Ta and Teq from their

35-yr average value based on the NARR data (only) are

shown in Fig. 2, by month, from May to September.

Across the United States the variability of all variables

decreases from May to July and August before in-

creasing again in September. With the exception of Teq,

to first order, variability also increases moving from

south to north across the country. The spatial patterns

FIG. 2. Standard deviation (K) of daily values of four temperature variables used in the study based on the NARRdata (1981–2010) and as

a function of warm season month. (a)–(e) Tmax for May–September, (f)–(j) Tmin, (k)–(o) Ta(max), and (p)–(t) Teq(max).
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for the standard deviation of daily Ta(max) are very

similar to those for Tmax, indicating the dominance of

temperature variability over humidity for this index.

Conversely, the variability of Teq(max) is dominated by

the contribution from specific humidity as reflected by

the maximum values in the eastern United States. The

southern edge of this maximum area moves northward

as the summer progresses, placing its center in the

Midwest in midsummer.

The covariance (chosen instead of correlation in order

to retain physical units) between daily q and daily Tmax

and Tmin is shown in Fig. 3, again from May to Sep-

tember. There are marked differences in behavior for

the two temperature variables. For Tmax, negative

FIG. 3. The covariance of daily (a)–(e) maximum and (f)–(j) minimum values of specific humidity and surface

temperature (g kg21 K) for May–September based on NARR data.
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covariance values develop across the southern and

southwestern portions of the United States as the sum-

mer season progresses. Positive covariance values are

seen elsewhere, reaching a maximum over the upper

Midwest and retreating northward as the summer sea-

son advances. In contrast, the covariance between q and

Tmin is generally positive across all of the United States

during each month. The covariance is largest in the

eastern United States, although the local maxima are

located considerably farther south than the positive

covariance of q and Tmax. One possible physical expla-

nation for the more widespread, positive covariance of q

and Tmin as compared to that for q and Tmax is the

greater influence of radiative cooling on Tmin versus

Tmax. Higher (lower) q is associated with elevated

(reduced) Tmin as a result of greater (less) downwelling

thermal radiation, whereas Tmax is more closely tied to

variations in solar radiation and temperature advection.

Finally, Fig. 4 shows the skewness of daily Tmax, Tmin,

and q, again fromNARRand bymonth. Given sampling

variability, even a normally distributed variable will

likely exhibit skewness values different from zero. As

there are roughly 1000 daily observations used to com-

pute the skewness values in Fig. 3 (30 days month21 3
35 yr),Monte Carlomethods were used to determine the

range in skewness values expected by chance. To do so,

the skewness of 500 sets of 1000 normally distributed

random numbers was computed, with values larger than

60.17 found to occur less than 5% of the time, thus in-

dicating the 95% confidence limits. For both Tmax and

FIG. 4. Skewness of daily values of (a)–(e)Tmax and (f)–(j)Tmin forMay–September and (k)–(o) daily mean specific humidity based on the

NARR data.
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Tmin Fig. 3 shows that skewness tends to be negative

across much of the country. For Tmax, skewness gen-

erally has greater negative skewness in the western

United States while for Tmin the largest negative values

are seen across the south and southeast. The specific

humidity q shows negative skewness values across the

southeast, extending to the southwestern United States

over the course of the summer and in conjunction with

theNorthAmericanmonsoon system. Positive skewness

is seen elsewhere, generally largest in the western part

and the northern tier of the United States, suggesting

that in those locations advection can occasionally bring

higher q values to these otherwise comparatively less

humid areas.

Taken together, Figs. 2–4 indicate clear and sub-

stantial differences in the variability and covariability of

the variables included in the definition of U.S. summer

heat waves. These will serve as a backdrop for the ana-

lyses provided in the following sections that examine the

behavior of specific heat wave characteristics, including

their geographical location, frequency of occurrence,

and persistence characteristics. Emphasis will be on

behavior at the USHCN stations, including a hybrid

combination of USHCN temperature data with NARR

humidity to compute Ta, Teq, and HI.

b. Geographic distribution of heat wave frequency of
occurrence

For all four temperature variables, the frequency of

occurrence of heat waves was evaluated at each station

location using the 80th, 90th, and 95th percentiles

for threshold criteria, and minimum durations of 5, 3,

and 3 days for each threshold, respectively. For this

purpose, a ‘‘heat wave day’’ was defined as a member

of a string of consecutive days in which the daily tem-

perature has met or exceeded the threshold criterion for

at least the minimum duration. For example, if the daily

temperature exceeded the 90th percentile for 4 consec-

utive days at a given station, that event would represent

two heat wave days, because the third and fourth day

FIG. 5. The percent occurrence of total heat wave days (1979–2013) defined using daily maximum values of four different temperature

variables and as a function of different definitional criteria. Results for daily variables exceeding the 80th percentile for at least 5 con-

secutive days shown for (a)T, (b)Ta, (c)Teq, and (d)HI; for the 90th percentile and 3 ormore days for (e)T, (f)Ta, (g)Teq, and (h)HI; and

the 95th percentile for 3 or more days in (i) T, (j) Ta, (k) Teq, and (l) HI. The pattern correlations with T are shown at the bottom right in

(b)–(d), (f)–(h), and (j)–(l).
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met the requirement for at least 3 days at the 90th per-

centile. The first two days are not included because we

are interested in differences in duration among heat

wave events and definitional criteria (e.g., the first two

days would be in common among all events when a

3-day minimum duration is specified). Of course, for

impact studies, the first few days of a heat wave can be

quite important in determining outcomes, such as on

human health (Semenza et al. 1996). If the temperature

exceeded the 90th percentile for only two days, neither

day would be considered a heat wave day. For each

station and temperature variable, the fraction of heat

wave days in each month between May and September

1979–2013 was computed. These results were analyzed

for each month separately and for the warm season as a

whole, with both daily maximum and minimum tem-

peratures considered.

For daily maximum values, Fig. 5 shows the percent of

all warm season days across all 35 years that were

identified as heat wave days for each variable and the

three sets of intensity and duration criteria. Naturally,

the number of heat wave days decreases as the intensity

threshold becomes higher. Generally speaking, Fig. 5

reveals that the highest frequency of heat wave days for

dailymaximum values tends to occur in the southeastern

and southwestern United States for all temperature

variables and intensity thresholds, with a relative mini-

mum in the north-central United States. There are,

however, notable differences in the spatial distributions

between the temperature variables. As one measure of

these differences, pattern correlations between the

percent occurrence of maximum values of Ta, Teq, and

HI with T were computed and are displayed in the

bottom right of each panel in Fig. 5. The pattern corre-

lations are higher for Ta and HI than for Teq, with values

typically in the range of 0.7–0.8 for the former and

0.4–0.6 for the latter. The fact that the lowest pattern

correlation is with Teq is likely associated with this var-

iable’s strong sensitivity to humidity compared with the

other variables (cf. Fig. 2). All of the pattern correlations

also decrease for the more intense events. This decrease

may just represent the influence of sampling variations

as there are, by definition, fewer intense events, which

reduces the overall sample sizes being evaluated.

The results for daily minimum temperature are shown

in Fig. 6. The first feature that stands out is that the

overall frequency of heat wave days for daily minimum

temperatures is less than that for daily maximum values

FIG. 6. As in Fig. 5, but for daily minimum values of the four temperature variables.
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across all four variables. The pattern correlations with

Tmin for the variables that include moisture are also

much higher than those for Tmax. The spatial distribu-

tions of heat wave frequency also show some departures

from those seen for daily maximum temperatures. Heat

wave frequency is still comparatively higher in the

southeastern United States relative to other regions, but

this regional maximum now extends northward into the

Midwest. Heat wave frequency in the southwestern

United States is generally lower than that seen for daily

maximum temperatures. Overall, the higher frequency

in the eastern United States is consistent with the ob-

servation that daily minimum temperatures across var-

iables are more closely associated with humidity than

daily maximum values (cf. Fig. 3). To synthesize the

results for both daily maximum and minimum values,

the country was arbitrarily divided into seven coherent

U.S. geographic regions: the Northwest (NW), South-

west (SW), North Central (NC), South Central (SC),

Midwest (MW), Northeast (NE), and Southeast (SE).

These regions are outlined in Fig. 6l.

Figure 7 shows themedian frequency of heat wave day

occurrence based on events exceeding the 90th percen-

tile for 3 or more days for all four variables and across all

stations in each U.S. region. Regional departures from

the national average are also displayed in the right

panels. Figures 7a,b (Figs. 7c,d) show daily maximum

(minimum) temperatures. For maximum values, Fig. 7b

confirms that the SE and SW regions have compara-

tively higher occurrence of heat waves during 1979–

2013. An interesting exception is for the SC region,

where heat wave frequency based on daily maximum

temperature (i.e., no humidity included) is also higher

than the national average. The NC region has the lowest

frequency of heat waves. For minimum daily tempera-

tures, Fig. 7d again reveals that SE and MW regions

generally have a higher frequency of occurrence, with

the lowest occurrence again in NC and now in NW as

well. An interesting exception is the SW region, where

heat waves based on Teq show a high rate of occurrence

relative to the national average. As Teq is most strongly

related to humidity, this would seem consistent with the

increase of humidity during the North American mon-

soon, when dailymaximum temperatures are reduced by

increased cloudiness while minimum values increase

with increased humidity.

An analysis of heat wave frequency using daily data

for individual warm season months was also conducted

in an attempt to discern if there were notable, coherent

spatial variations in the occurrence of heat waves on the

FIG. 7. (a)Median values of the percent occurrence of heat wave days (events exceeding the 90th percentile for 3

or more days) for all years based on daily maximum values of the four temperature variables and computed for the

different regions of the United States: NW, SW, NC, SC, MW, NE, and SE. (b) Differences in percentage from the

average across all regions. (c),(d) As in (a),(b), but for daily minimum values of the temperature variables.

7836 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/20/22 06:52 PM UTC



subseasonal time scale. These analyses (not shown) did

not identify any consistent differences in behavior dur-

ing the evolution of the warm season, although this re-

sult is likely sensitive to a small sample size as only 35

years of data are available to analyze.

c. Regional persistence characteristics

In addition to regional variations in heat wave fre-

quency, different measures of persistence of heat wave

events were assessed. The fundamental question here is

the degree to which the frequency of heat wave days is

related to their persistence characteristics. For example,

does a high frequency of occurrence of heat wave days

in a particular region arise from longer-lasting individual

heat wave events, or just more frequent heat wave

events of shorter duration? For this analysis, at each

station the cumulative number of heat wave days

equaling or exceeding a given duration was computed.

The cumulative number of heat wave days will drop off

more quickly as a function of duration at locations

where short duration heat waves prevail relative to lo-

cations having more protracted heat wave events. The

e-folding time represents the amount of time required

for the cumulative frequency of heat wave days to drop

by a factor of 1/e (0.368) from the cumulative single heat

wave day frequency. To calculate the e-folding time, a

polynomial was fit (using a sixth-order polynomial and

including terms up to x5, where x is the duration in

number of days) to the cumulative frequencies of oc-

currence of heat wave days for each number of days’

duration. For example, if the cumulative percentage

frequencies of occurrence of 90th-percentile heat waves

lasting for at least 1, 2, 3, 4, and 5 days is 10.0%, 5.53%,

3.25%, 2.02%, and 1.21%, respectively, then the number

of days required for the smoothed curve to drop to 3.68

(the e-folding time) is calculated at 2.76 days.

The e-folding time of daily maximum temperature

variables is provided in Fig. 8. As expected, the e-folding

rate is shorter (longer) for heat waves defined using a

higher (lower) intensity threshold. The overall spatial

patterns for persistence, however, are very similar to

those for heat wave frequency, with higher values in the

SE and SW regions, for example. Also plotted in Fig. 8

are the pattern correlations between the variables that

include humidity with maximum temperature. They

tend to be somewhat lower for e-folding time than for

FIG. 8. As in Fig. 5, but for daily maximum temperature variables but for the e-folding time (days) for heat wave events.
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heat wave frequency but the same relationships are

seen, with the lowest values for Teq and for the most

intense heat wave events.

Figure 9 is a similar analysis, but for the daily mini-

mum temperature variables. Again, the spatial patterns

are generally quite similar to those for heat wave fre-

quency. This includes shorter e-folding times for mini-

mum temperatures than formaximum temperatures and

higher pattern correlation coefficients for the former.

Spatial variations across the seven U.S. regions were

again generated (not shown), which very closely mirror

the results for heat wave frequency shown in Fig. 7. This

includes differences in behavior among the heat wave

variables by region. Taken together, the persistence

results indicate that a higher frequency of heat wave

days generally results from longer-lived events rather

than more frequent but shorter-lived heat waves.

One consistent regional result across variables and for

both maximum and minimum daily temperature vari-

ables is the minimum in heat wave frequency and per-

sistence in the NC region of the United States. While a

forthcoming paper will focus on heat wave relationships

to the regional and large-scale circulation, here some

insight is gained by considering the variability of the

transient eddy heat and moisture transports during the

warm season, as shown in Fig. 10. The transient eddy

fluxes in Fig. 10 are computed using daily departures of

the meridional wind, temperature, and specific humidity

values at 850hPa from their respective monthly aver-

ages for a given year, using data from Reanalysis-2. The

standard deviation of the daily eddy fluxes is first com-

puted for eachwarm seasonmonth individually and then

averaged over all months over the period 1981–2010.

The minimum in heat wave frequency and persistence

across temperature variables in the northern plains is

seen to be generally collocated with a maximum in the

eddy transport variance there. This suggests that, on

average, the greater variability in day-to-day atmo-

spheric circulation in this region inhibits the persistence

of longer-lived heat wave events.

4. Differing behavior of daily maximum and
minimum temperature variables

As a final set of analyses, the differing behavior of

daily maximum and minimum temperature variables

was examined inmore detail. As shown in Figs. 5–9, U.S.

heat waves are both less frequent and less persistent

FIG. 9. As in Fig. 8, but for daily minimum temperature variables.
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when identified using minimum versus maximum tem-

peratures. This was true for temperature alone and for

the temperature indices that included atmospheric

moisture. These differences were examined further by

considering the behavior of the temperature variables

individually and in comparison with each other.

Figure 11 is based on the frequency of occurrence of

heat wave days in a given month averaged across all

stations in the United States, representing a total of 175

observations (5 months 3 35 yr). Figure 11 shows the

percent of heat wave days (based on events exceeding

the 90th percentile for 3 or more days) in a given month

for maximum versus minimum values of a given tem-

perature index. The dashed lines in Fig. 11 represent a

1:1 relationship and the solid lines are ordinary least

squares linear regression fits to the monthly data. The

regression lines for each variable are seen to have slopes

that are slightly less than one. At first glance, this may

appear to be in contradiction to earlier results showing

that the frequency of heat waves is greater for maximum

rather than minimum temperatures. As will be shown,

however, this result is due to the presence of temporal

trends in heat wave frequency for all minimum tem-

perature variables that is larger than those for maximum

temperature. The weakest (strongest) relationship be-

tweenmaximum andminimumvalues is for temperature

(Teq), having a correlation of r5 0.57 (r5 0.86). For Ta

and HI, the results are somewhere in between. For all

variables, the relationships are highly statistically sig-

nificant (p , 0.01).

Figure 12 is generated in a similar fashion as for

Fig. 11, but now examines the relationships between

maximum or minimum temperatures with respective

values of the variables that include humidity. For

FIG. 10. Standard deviation (1981–2010) of the 850-hPa transient eddy (a) heat flux (Km s21)

and (b) moisture flux (g kg21 m s21) computed monthly and then averaged over all warm

season months.
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maximum temperature variables the slopes of the re-

gression lines are now all well less than unity, indicating

that the frequency of occurrence of heat waves is greater

for temperature alone than for the temperature and

humidity indices. Roughly speaking, for the United

States as a whole it is thus more likely for a heat wave to

develop based solely on temperature than for both

temperature and humidity to contribute to an event.

This result is most pronounced for comparisons with Teq

(Fig. 12c), the variable having the strongest sensitivity to

atmospheric moisture. Maximum values of Teq also

show the lowest correlation with temperature.

The same analysis for the minimum temperature

variables (Figs. 12d–f) shows markedly different be-

havior. Here, the slopes of the regression lines for each

temperature variable are very close to unity and also

show a much stronger fit to the data (correlations from

0.88 to 0.99), including Teq. The likely reason for this

result is that, unlike maximum daily temperatures,

minimum temperatures show a stronger and more spa-

tially consistent relationship with atmospheric moisture

content (cf. Fig. 3). This is consistent with higher hu-

midity reducing the rate of radiational cooling from the

surface at night, which is well known. While the occur-

rence and persistence of heat waves are both less when

based on daily minimum values, when they do develop

they showmore consistent behavior. Important regional

differences in behavior of course do occur, as shown in

Fig. 7.

Finally, the temporal variability in heat wave occur-

rence across the United States (1979–2013) is summa-

rized in Fig. 13, which shows annual warm season values

of the percent of occurrence of heat waves identified for

all four variables when maximum and minimum tem-

peratures that exceeded the 90th percentile for at least

3 days. Maximum temperatures exhibit greater differ-

ences among variables than do minimum values, con-

sistent with our earlier results. The range in heat wave

FIG. 11. Dots represent the percentage of heat wave days in a given calendar month (May–September) computed

using daily maximum values of a temperature variable (vertical axes) vs that for daily minimum values (horizontal

axis): (a) T, (b) HI, (c) Ta, and (d) Teq. Solid black lines are a least squares linear fit to the data with associated

correlation coefficient provided in the bottom right of each panel. Dashed diagonal line represents a ratio of 1:1.
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frequency over the study period varies by a factor of

more than 5 for both maximum and minimum temper-

ature variables. Temporal trends in heat wave frequency

for the seven U.S. regions (1979–2013) were also ex-

amined along with their statistical significance based

on the two-tailed Student’s t test. These trends are for

events that exceeded the 90th percentile for 3 or more

days with the results summarized in Table 1. The results

indicate that statistically significant trends in heat wave

frequency based on daily maximum temperatures are

less common than those based on daily minimum values.

The NC and MW regions did not exhibit significant

trends for either daily maximum or minimum values.

These results are generally consistent with a study by

FIG. 12. As in Fig. 11, but now examining relationships between temperature variables, showing daily

(a)–(c) maximum and (d)–(f) minimum values, for T vs (a),(d) Ta, (b),(e) HI, and (c),(f) Teq.
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Peterson et al. (2008), who identified statistically sig-

nificant upward trends in both daily maximum and

minimum temperatures exceeding the 90th percentile

when averaged across North American stations. How-

ever, that study did not require a minimum duration of 3

or more consecutive days above the threshold and there

were substantial regional variations in trends. They also

found that daily minimum temperatures exceeding the

90th percentile are increasing faster than daily maxi-

mum values. Much earlier, Karl et al. (1984, 1993) had

found that mean daily minimum temperature was gen-

erally increasing at a faster rate than maximum tem-

perature across the United States, resulting in a

decreasing diurnal temperature range even in rural

stations. Our results are also generally consistent with

studies showing upward trends in surface specific hu-

midity (Brown and DeGaetano 2013), with Gaffen and

Ross (1999) finding a greater increase in nighttime than

daytime values. Studies have also shown statistically

significant upward trends in Ta and Teq (Gaffen and

Ross 1999; Fall et al. 2010) during overlapping time

periods. Using the North American Land Data Assim-

ilation System, version 2 (NLDAS-2; Xia et al. 2012)

dataset, Smith et al. (2013) identify upward trends in

daily maximum values of temperature and Ta over a

similar analysis period as used here, although they did

not use the same threshold and duration criteria as in the

current study. Overall, our trend results are generally

consistent with earlier findings, with the important ca-

veat mentioned in section 2b that no bias correction was

made to the USHCN daily data to adjust for changes in

time of observation. Such changes have likely introduced

a temporally increasing cold bias to our USHCN results,

reducing the magnitude of our positive temporal trends

relative to a bias-corrected version of the data or other

datasets (e.g., Vose et al. 2012).

5. Discussion and conclusions

A heat wave is a fundamentally important climate

extreme having myriad environmental and social im-

pacts and yet it lacks a universally accepted definition.

The analysis of heat waves is frequently undertaken ei-

ther with a particular impact in mind (e.g., human

health) or using a single temperature variable or heat

index. The main goal of the current study was to com-

pare the statistical characteristics of U.S. warm season

heat waves when defined using four different tempera-

ture variables (and their daily maximum versus mini-

mum values) and differing definitional intensity and

duration criteria. While largely based on daily temper-

ature data for stations in the USHCN, the study also

tested and demonstrated the reliability of using the

NARR data to compute three widely used temperature

indices that include atmospheric moisture. Heat wave

intensity thresholds were based on daily percentiles to

eliminate the influence of regional variations in clima-

tological temperatures on the analysis and to manage

FIG. 13. The frequency of heat waves expressed as a percentage

of heat wave days by year (1979–2013), based on daily

(a) maximum and (b) minimum values for all four variables.

TABLE 1. Statistical significance of linear trends in heat wave

frequency of occurrence, by region, with 90%, 95%, and 99%

confidence levels. No confidence level means not significant. Re-

gions are outlined in Fig. 6l.

Region

NW SW NC SC MW NE SE

Tmax — 90% — — — — —

Ta(max) — — — — — — —

HImax — 90% — — — — —

Teq(max) 90% — — — — 95% —

Tmin 95% 99% — 95% — 99% 99%

Ta(min) 95% 99% — 95% — 99% 95%

HImin 95% 99% — 95% — 99% 99%

Teq(min) — — — — — 95% 90%
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large differences in absolute temperature values, particu-

larly those based on Teq, which is very sensitive to atmo-

spheric moisture content. Emphasis was placed on the

geographical distribution and regional persistence char-

acteristics of heat waves as well as differences in behavior

between events identified using daily maximum, versus

minimum, temperatures. Before explicitly examining heat

waves, the temporal variability and covariability of heat

wave–related variables was examined, serving as a refer-

ence for the interpretation of subsequent results.

The key findings of the study include the following:

d For the country as a whole and when evaluated re-

gionally, heat waves are more frequent and show

greater persistence when defined using daily maximum

versus daily minimum temperatures. This was true for

all four of the temperature variables examined.
d There are notable regional variations in heat wave

occurrence, being generally more frequent in the

southeastern and southwestern United States for daily

maximum values of all four variables. For daily

minimum temperatures, heat waves aremore frequent

in southeastern, south-central, and midwestern areas.

They are least frequent in the northern plains for both

maximum and minimum temperatures.
d Substantial differences in the frequency of heat wave

occurrence among the four temperature variables

were identified for events defined using daily maxi-

mum versus minimum temperatures. For the country

as a whole, extremes in the minimum values of

temperature variables show greater spatial coherency

than do maximum values. This result is consistent

with a more spatially homogeneous pattern in the

covariability of daily minimum temperature and spe-

cific humidity than for daily maximum temperatures.
d Statistically significant upward trends in the frequency

of heat wave occurrence are identified for most U.S.

regions for events based on daily minimum values, for

all four variables over the period 1979–2013. Fewer

statistically significant regional trends were identified

FIG. 14. Average dailymaximum temperature anomaly (8C; shaded) and q (g kg21; contours)

during two heat wave events based on the NARRdata and a 1981–2010 base period, for (a) 11–

15 Jul 1995 and (b) 15–25 Jul 2012. [The blue boxes in (a),(b) represent regions over which the

variables shown in Fig. 15 have been averaged.]
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for the frequency of heat wave occurrence when events

were identified using daily maximum temperatures.

Overall, the results reveal important differences in heat

wave behavior depending on how they are defined. Dif-

ferences in the frequency of occurrence and persistence

of heat waves when defined using daily maximum versus

minimum temperature are particularly noteworthy and

point to an asymmetry in forcing. For example, while an

anomalous atmospheric circulation pattern likely ac-

companies heat waves defined using either maximum or

minimum temperature, anomalously dry soils favor en-

hanced daytime over nighttime temperatures, including

in comparatively humid regions such as the southeastern

United States (e.g., Durre et al. 2000). Our results also

show that enhanced minimum temperatures are fre-

quently accompanied by enhanced humidity, a condition

that may accompany, but is not required for, enhanced

daily maximum temperatures. In addition to being in-

sightful from phenomenological and physical perspec-

tives, the results also serve as a cautionary note when

using heat wave information for impact analysis. Heat

wave statistics derived from different temperature in-

dicators may well lead to different conclusions.

While this study has focused on the aggregate be-

havior of heat waves, it is also important to realize that

substantial variations in heat wave behavior can occur in

any geographic location. To emphasize this point, Fig. 14

shows the average daily maximum temperature and

specific humidity anomalies averaged over the peak

period of two substantial July heat wave events that

occurred in the Midwest (1995 and 2012) based on the

NARR data. The 1995 event, frequently referred to as

the ‘‘Chicago heat wave,’’ was a short-lived but intense

heat wave that was also accompanied by anomalously

high surface specific humidity. The 2012 heat wave was

of much longer duration but comparably ‘‘dry’’ in terms

of humidity. Further differences in behavior are seen in

Fig. 15, which shows daily time series of daily maximum

and minimum values of Ta and daily mean specific hu-

midity q over the course of both events (expressed in

percentiles, obtained by ranking daily values in the

NARR data). All three variables exceed the 95th per-

centile during the peak of the 1995 event. The high ap-

parent temperature during both the day and night was a

major contributor to increased human mortality in

Chicago in 1995 (e.g., Kunkel et al. 1996). While the

2012 event was much longer-lived, the specific humidity

remained below median values, and the daily minimum

Ta was well below daily maximum values, throughout

the event. This likely had important implications for

heat stress on both humans and livestock. It is also im-

portant to note that the 2012 event was accompanied by

drought conditionswhile in 1995 the land surface condition

was comparatively ‘‘wet.’’ The relationship between an-

tecedent and concurrent land surface conditions with

summer heat wave behavior is currently under study.
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